Leading OEM/ODM Services for Cutting-Edge AI & AR Hardware Innovations
Abstract: This article delves into the development of AR optical technology, tracing its evolution from the initial prism-based solutions to the current waveguide-based approaches. It provides a detailed analysis of the principles, advantages and disadvantages, technical challenges, and future trends of various optical solutions. By offering a comprehensive overview of AR optical technology, this article aims to serve as a valuable technical guide and market insight for industry professionals, researchers, and enthusiasts interested in AR technology.
AR (Augmented Reality) technology integrates virtual information with the real environment to create an enhanced interactive experience for users. As a core component of AR technology, AR optics primarily addresses the following four issues:
Near-eye focusing: By utilizing the refractive principle of optical lenses, the virtual image is brought into focus within the eye's comfortable viewing distance, enabling clear display.
Field of view (FOV) expansion: Through the refractive principle of optical lenses, the angle of light propagation is increased while achieving near-eye display, thereby expanding the display range of virtual images.
Environmental see-through: The optical system is designed to allow real-world light to pass through, enabling users to directly observe the real environment.
Virtual-real overlay: Ensuring seamless integration of virtual information and the real environment to provide a natural and immersive user experience.
AR (Augmented Reality): Superimposes virtual information onto the real environment, with the user's perceptual experience based on the real world.
VR (Virtual Reality): Creates a completely computer-generated virtual environment, with the user's perceptual experience entirely unrelated to the real world.
MR (Mixed Reality): Combines the features of AR and VR, capturing real environment information through cameras and inserting computer-generated virtual content.
Definition: The angle formed by the edges of the display area and the center of the eye's pupil.
Importance: A larger FOV enhances the user's sense of immersion.
Application Scenarios: Different FOVs are suitable for various functional scenarios, such as information prompts, video projection, virtual-real integration, and immersive experiences.
Definition: The brightness of the virtual image displayed by the optical system.
Importance: The level of brightness affects the clarity, contrast, and color vividness of the image.
Application Scenarios: Sufficient brightness allows users to see the image clearly even in direct sunlight.
Definition: The ratio of the amount of real-world light received by the eye through the optical element to the total amount of real-world light.
Importance: High transmittance enables a clearer view of the real world.
Application Scenarios: In AR optics, transmittance determines the clarity and color accuracy of the real environment.
Definition: The ratio of the light received by the eye to the light emitted by the light source.
Importance: Different optical solutions have varying levels of optical efficiency due to their principles and designs.
Application Scenarios: Optical efficiency directly affects display quality and energy consumption.
Definition: The area between the near-eye display optical module and the eyeball, where the display content is the clearest.
Importance: A larger eyebox provides greater comfort and flexibility for users during wear.
Application Scenarios: In AR devices, the size of the eyebox directly impacts user experience.
Definition: The distance between the eye and the optical lens required to see the entire field of view.
Importance: The eyerelief affects the thickness and design of the optical system.
Application Scenarios: Optimizing eyerelief in AR optics can enhance wearing comfort.
Definition: The maximum thickness of the optical module in the direction perpendicular to the user's line of sight.
Importance: Thickness determines the volume, weight, and wearing comfort of AR glasses.
Application Scenarios: In AR optics, thickness optimization is key to achieving lightweight and daily wearability.
Principle: Utilizes a micro projector and reflective prisms to form an optical display system, reflecting the image onto the user's eye through the prism.
Advantages and Disadvantages:
Advantages: Mature technology and low cost.
Disadvantages: Small FOV, large volume, insufficient brightness, and image distortion.
Application Scenarios: Early AR devices, such as Google Glass.
Principle: Uses a half-reflective, half-transmissive mirror to reflect the display content and transmit real environment information, achieving the superimposition of virtual and real objects.
Advantages and Disadvantages:
Advantages: Simple structure, mature technology, low cost, and capable of achieving a large FOV.
Disadvantages: Large volume, prominent design, limited application scenarios, and unstable holographic images.
Application Scenarios: Military field and early AR devices.
Principle: Utilizes free-form surface mirrors to reflect the display image and transmit real environment light.
Advantages and Disadvantages:
Advantages: Mature technology, good imaging quality, and low light loss.
Disadvantages: Bulky product and image distortion.
Application Scenarios: B-end glasses and industrial applications.
Principle: Uses a bird-bath-shaped concave mirror to converge the light from the micro display on the top of the glasses, simulating focus at a fixed distance from the eye, and then reflecting it into the eye.
Advantages and Disadvantages:
Advantages: Low cost, light weight, and good image quality.
Disadvantages: Thick module, low transmittance, limited field of view, small eyerelief, and light leakage.
Application Scenarios: Consumer AR glasses and video projection scenarios.
Principle: Utilizes waveguides to extend the optical path, using semi-reflective, semi-transmissive mirror arrays, gratings, and other optical elements to achieve light folding and propagation.
Classification:
Geometric waveguide: Relies on light reflection to enter and exit the waveguide coupling structure, mainly array waveguides.
Diffractive waveguide: Relies on light diffraction to enter and exit the waveguide coupling structure, including surface relief grating waveguides, volume holographic grating waveguides, and polarization volume holographic grating waveguides.
Hybrid waveguide: Combines the advantages of Birdbath and traditional waveguide optical solutions using polarization retroreflection optics.
Pinhole waveguide: Utilizes the principle of small hole imaging to reflect light through the eye's pupil and form an image on the retina.
Technical Principle: Utilizes a semi-reflective, semi-transmissive mirror array to reflect image information, following the law of light reflection.
One-dimensional and Two-dimensional Eye Expansion:
One-dimensional eye expansion: Expands the exit pupil in the horizontal direction to accommodate a larger range of interpupillary distances.
Two-dimensional eye expansion: Expands the exit pupil in both horizontal and vertical directions, increasing the field of view and eyebox size.
Production Process: Includes steps such as cutting, grinding, polishing, coating, and bonding.
Core Vendors and Application Products: Lumus, Optivent, Lingxi, Li, etc.
Technical Principle: Utilizes the diffraction effect of light, using grating structures to achieve light coupling in and out.
Classification:
Surface relief grating waveguide: Manufactured using nanoimprint technology.
Volume holographic grating waveguide: Manufactured using laser holographic interference technology.
Polarization volume holographic grating waveguide: Combines polarizers and grating structures.
Production Process: Includes steps such as photoresist coating, electron beam writing, etching, and encapsulation.
Core Vendors and Application Products: Sony, TrueLife Optics, Digilens, WoveOptics, Vuzix, Dispelix, Akonia, etc.
Technical Principle: Utilizes polarization retroreflection optics, combining the advantages of Birdbath and traditional waveguide optical solutions.
Dual Hybrid Waveguide: Achieves a larger field of view by splicing two single hybrid waveguide systems.
Core Vendors: Mosquito Vision (acquired by Google), Goer, Huawei, Xreal, Rokid, etc.
Principle: Based on Maxwell's observation method, using an LBS+HOE design to achieve retinal projection display.
Core Components: HOE (Holographic Optical Element).
Technical Challenges: The fabrication process of color HOE is complex, with issues such as color uniformity, RGB crosstalk, and ghosting.
Principle: Utilizes sub-wavelength-sized devices arranged in two-dimensional space to achieve specific electromagnetic properties.
Technical Challenges: Performance issues, fabrication limitations, and difficulty in achieving pixel-level dynamic metasurfaces.
Waveguide Solutions: Expected to become the preferred solution for consumer AR upgrades in the next 3-5 years.
Technical Optimization: Technologies such as one-dimensional eye expansion, two-dimensional eye expansion, and variable focus will further develop.
Material Innovation: Solutions such as volume holographic grating waveguides and polarization volume holographic grating waveguides will gradually mature.
Consumer Market: With the popularization of AR technology, the consumer AR glasses market will grow rapidly.
Application Scenarios: From video projection to virtual-real integration, and then to immersive experiences, the application scenarios of AR glasses will continue to expand.
Industrial Chain Improvement: The upstream hardware raw materials, midstream optical solutions, and downstream terminal application brands will form a complete industrial chain.
The development of AR optical technology has gone through several stages from prism-based solutions to waveguide-based solutions. Each solution has its unique technical principles and application scenarios. As technology continues to advance, waveguide solutions, with their advantages of being lightweight, having high transmittance, and large FOV, are gradually becoming the direction for AR glasses development. In the future, with further breakthroughs in material science and manufacturing processes, AR optical technology will bring more immersive and convenient experiences to users, promoting the widespread application of AR devices.
摘要: 本文深入探讨了AR光学技术的发展历程,从最初的棱镜方案到如今备受关注的光波导方案,详细分析了各类光学方案的原理、优缺点、技术挑战以及未来发展趋势。通过对AR光学技术的全面剖析,旨在为相关从业者、研究人员以及对AR技术感兴趣的读者提供一份详尽的技术指南和市场洞察。
AR(增强现实)技术通过将虚拟信息与现实环境相融合,为用户带来全新的交互体验。AR光学作为AR技术的核心组成部分,主要解决以下四个问题:
近眼聚焦: 通过光学透镜的折射原理,使明视距离内的屏幕图像满足人眼聚焦条件,实现清晰显示。
视场放大: 利用光学透镜的折射原理,在实现近眼显示的同时,增大光线传播角度,从而扩大虚拟图像的显示范围。
环境透视: 通过光学系统的设计,允许现实环境光线通过,实现用户对现实环境的直接观察。
虚实叠加: 确保虚拟信息与现实环境的无缝融合,提供自然且沉浸式的用户体验。
AR(增强现实): 将虚拟信息叠加在现实环境中,用户的观感体验建立在真实环境之上。
VR(虚拟现实): 完全由计算机生成的虚拟环境,用户的观感体验与现实环境无关。
MR(混合现实): 结合了AR和VR的特点,通过摄像头捕提现实环境信息,并插入计算机生成的虚拟内容。
定义: 显示设备成像中,人眼可观察部分的边缘与人眼瞳孔中心连线的夹角。
重要性: 视场角越大,用户的沉浸感越强。
应用场景: 不同的视场角适用于不同的功能场景,如信息提示、投屏观影、虚实融合以及沉浸体验等。
定义: 光学系统显示虚拟图像的亮度。
重要性: 亮度的高低影响画面的清晰度、对比度、色彩鲜艳度等参数。
应用场景: 足够高的亮度允许用户在阳光直射的环境中也能看清图像。
定义: 人眼透过光学元件可接收到的环境光量与总环境光量的比例。
重要性: 高透光率可以使观察到的现实世界更清晰。
应用场景: 在AR光学中,透光率决定了现实环境的清晰度和色彩度。
定义: 人眼接收光与发光元件发出光的比例。
重要性: 不同的光学方案采用的原理和设计不同,导致光学效率相差很大。
应用场景: 光学效率的高低直接影响了显示效果和能耗。
定义: 近眼显示光学模组与眼球之间的一块区域,是显示内容最清晰的区域。
重要性: 眼动范围越大,用户在佩戴时的舒适度和使用灵活性越高。
应用场景: 在AR设备中,眼动范围的大小直接影响用户体验。
定义: 能够看清整个视场时眼睛与光学镜片间的距离。
重要性: 出瞳距离的大小影响了光学系统的厚度和设计。
应用场景: 在AR光学中,出瞳距离的优化可以提高佩戴舒适度。
定义: 光学模组与人眼视线垂直方向的最大厚度。
重要性: 厚度决定了AR眼镜的体积、重量和佩戴舒适度。
应用场景: 在AR光学中,厚度的优化是实现轻量化和日常佩戴的关键。
原理: 利用微型投影仪和反射棱镜组成光学显示系统,通过棱镜的反射将图像投射到人眼。
优缺点:
优点: 技术成熟,成本低廉。
缺点: 视场角小,体积大,亮度不足,图像畸变。
应用场景: 早期AR设备,如Google Glass。
原理: 利用半透半反镜片实现显示屏内容的反射,现实环境信息的透射,从而实现虚实景物的叠加。
优缺点:
优点: 结构简单,工艺成熟,成本低,可实现较大的FOV。
缺点: 体积大,造型突出,应用场景有限,全息影像不稳定。
应用场景: 军工领域,早期AR设备。
原理: 利用自由曲面镜片实现显示屏图像的反射和现实环境光线的透射。
优缺点:
优点: 技术成熟,成像效果好,光损低。
缺点: 产品厚重,图像畸变。
应用场景: B端眼镜,工业应用。
原理: 利用鸟盆状的凹面镜将来自眼镜顶部的微显示屏光线汇聚,模拟在人眼固定距离对焦,再反射入人眼。
优缺点:
优点: 成本低,重量轻,成像质量好。
缺点: 模组厚,透光率低,视野受限,出瞳距离小,漏光。
应用场景: 消费级AR眼镜,投屏观影类场景。
原理: 利用光波导实现光路的延长,通过半透半反镜面阵列、光栅等光学元件实现光的折叠和传播。
分类:
几何光波导: 依靠光的反射进出光波导的耦合结构,主要为阵列光波导。
衍射光波导: 依靠光的衍射进出光波导的耦合结构,分为表面浮雕光栅波导、体全息光栅波导和偏振体全息光栅波导。
混合光波导: 采用偏振折返式光学,结合了Birdbath和传统波导光学方案的优点。
孔阵光波导: 利用小孔成像原理反射光线透过人眼瞳孔并在眼底成像。
技术原理: 利用半透半反镜面阵列反射图像信息,遵循光的反射定律。
一维扩瞳和二维扩瞳:
一维扩瞳: 通过在水平方向上复制出瞳,适配更大的瞳距范围。
二维扩瞳: 在水平和垂直方向上同时扩展出瞳,增加视场角和眼动范围。
生产工艺流程: 包括切割、研磨、抛光、镀膜和贴合等步骤。
核心厂商及应用产品: Lumus、Optivent、灵犀、理等。
技术原理: 利用光的衍射效应,通过光栅结构实现光的耦入和耦出。
分类:
表面浮雕光栅波导: 通过纳米压印技术制造。
体全息光栅波导: 通过激光全息干涉工艺制造。
偏振体全息光栅波导: 结合偏振片和光栅结构。
生产工艺流程: 包括光刻胶涂覆、电子束直写、刻蚀、封装等步骤。
核心厂商及应用产品: Sony、TrueLife Optics、Digilens、WoveOptics、Vuzix、Dispelix、Akonia等。
技术原理: 利用偏振折返式光学,结合了Birdbath和传统波导光学方案的优点。
双混合波导: 通过两套单混合波导系统的拼接,实现更大的视场角。
核心厂商: 蚊视(已被谷歌收购)、歌尔、华为、Xreal、Rokid等。
原理: 基于Maxwell观察法,采用LBS+HOE的设计实现视网膜投影显示。
核心器件: HOE(全息光学元件)。
技术挑战: 彩色HOE的制备工艺复杂,存在颜色均匀性、RGB串扰、鬼像等问题。
原理: 利用亚波长尺寸器件在二维空间中排布实现特定的电磁特性。
技术挑战: 性能问题、制备限制、像素级动态超表面难以实现。
光波导方案: 未来3-5年将成为消费级AR升级的首选方案。
技术优化: 一维扩瞳、二维扩瞳、可变焦等技术将进一步发展。
材料创新: 体全息光栅波导、偏振体全息光栅波导等方案将逐步成熟。
消费级市场: 随着AR技术的普及,消费级AR眼镜市场将迅速增长。
应用场景: 从投屏观影到虚实融合,再到沉浸式体验,AR眼镜的应用场景将不断拓展。
产业链完善: 上游硬件原材料、中游光学方案、下游终端应用品牌将形成完整的产业链。
AR光学技术的发展经历了从棱镜方案到光波导方案的多个阶段,每一种方案都有其独特的技术原理和应用场景。随着技术的不断进步,光波导方案以其轻薄、高透光率、大视场角等优势,逐渐成为AR眼镜的发展方向。未来,随着材料科学和制造工艺的进一步突破,AR光学技术将为用户带来更加沉浸式和便捷的体验,推动AR设备的广泛应用。