Leading OEM/ODM Services for Cutting-Edge AI & AR Hardware Innovations
I. Background and Industry Forum Information
This report on the AI smart glasses electrochromic lens industry is led by He Wancheng, founder of Wellsenn Information, and was released on April 3, 2025. The report is hosted by Guangdong MiellsennXR KID Kangtai Da Technology, co-organized by Shenzhen Wellsenn Information Technology Co., Ltd. and Kunshan Kangtai Da Intelligent Technology Co., Ltd., co-sponsored by Shenzhen Augmented Reality Technology Application Association, and undertaken by Shenzhen Shengcai Event Planning Co., Ltd. The release of the report is closely related to the upcoming "A/+AR Smart Glasses Intelligent Manufacturing Summit Forum," which will be held on April 11, 2025, at the Shenzhen Bay Marriott Hotel in Nanshan, Shenzhen, aiming to explore the industrial trends, technological innovations, and application prospects of AI/AR smart glasses.
The forum agenda is rich and diverse, including check-in, product experience, opening remarks, and several keynote speeches. Keynote speakers from various enterprises and institutions cover multiple aspects such as the scale and trends of the AI glasses industry, optical detection solutions, sealing leak detection technologies, dispensing processes, SIP packaging technologies, and testing technologies. In addition, the forum also provides an experience opportunity for more than 20 latest A/AR smart glasses, including Solos, AirGo, Snapchat Spectacles 3, Roy Ban, Metair Bird V3, Raybird X2, and other well-known brand products. Exhibitors include KD Kangtai Da Technology, FSTW, HIRAVE, SUHMEN, etc. The participation fee is 999 yuan per person, with a limit of 150 participants.
II. Overview of Color-changing Technology
Color-changing technology is an interdisciplinary innovation that integrates material science, optics, and chemistry. Since the introduction of photochromic glass in the 1960s, it has evolved from photochromic to electrochromic stages. Its core concept is to dynamically adjust the transmittance in response to environmental light intensity changes, achieving seamless transition between strong and weak light environments.
Photochromic lenses are currently the mainstream choice due to their low cost and lightweight modules. However, with the penetration of AI/AR smart glasses in the consumer market, the consumer market (C-end) is placing higher demands on the response speed and intelligent integration of color-changing lenses. Electrochromic lenses, with their low response speed, multi-level controllability, and increasingly mature mass production processes, are gradually becoming the direction of development for the smart glasses market. Vendors such as Xiaomi, Xreal, Viture, and INAIR have already launched or are about to launch AI/AR smart glasses equipped with electrochromic lenses, and it is predicted that electrochromic lenses will become the preferred solution for upgrading most smart glasses in the future.
The key to electrochromic lenses lies in the design of the electrochromic layer, which uses current or voltage stimulation to alter the physical structure or chemical properties of the color-changing material, achieving a smooth transition under different lighting conditions. Additionally, electrochromic technology based on multi-layer structures, composite films, or other optical designs expands the use scenarios of electrochromic lenses and adds new solutions for the diversification of smart glasses.
III. Detailed Analysis of Color-changing Lens Technology
Color-changing lenses can adjust their transmittance based on environmental light or electrical signals, dynamically regulating the depth of the lens color to reduce glare in strong light conditions and ensure clarity in weak light conditions.
In the field of traditional glasses, color-changing lenses provide complex lighting environments with seamless transitions for ultraviolet and glare protection, allowing quick switching between regular glasses and sunglasses. They offer continuous protection for light-sensitive individuals (such as post-cataract surgery patients) or extreme lighting conditions (such as snow reflection). By selecting lenses of different colors, they can also be used for blue light prevention,杂 light filtration, eye fatigue relief, and added fashion. They provide all-day adaptation to diverse scenarios and continuous protection for eye health.
In the field of AI/AR smart glasses, color-changing lenses support AR devices in providing more realistic, comfortable, and personalized user experiences under different lighting conditions. They achieve transmittance switching under varying light intensities, enhance virtual imaging light effects through coordination with display screen brightness adjustments, and, through deep integration with sensors and algorithms, can also match the brightness needs of the user's visual focus area in real-time, anticipating environmental changes to reduce visual latency.
Based on the color-changing mechanism, color-changing lenses can be divided into two mainstream types: photochromic lenses and electrochromic lenses. Photochromic lenses rely on ultraviolet radiation to change color and are suitable for outdoor scenarios, with some products adding visible light color-changing capabilities for use in vehicles and other settings. Electrochromic lenses rely on voltage or current to change color and can respond under various lighting conditions. Photochromic products undergo molecular isomerization under light conditions, affected by the diffusion of substrate or film materials, resulting in longer color-changing times. They are passively responsive and cannot be controlled by the user. Electrochromic products change color quickly in response to current or voltage stimuli, altering structure or undergoing redox reactions. They have a shorter color-changing time and are controllable, allowing users to manually adjust the magnitude and direction of current or voltage to achieve varying degrees of color change and transmittance regulation. Photochromic processes are mature, with simple structures that do not require additional power sources or circuits, resulting in lower material and overall costs. Electrochromic technology, however, is still evolving, with supply chains yet to be perfected. Its complex structure requires additional circuits and power sources, along with film and packaging structures, leading to higher material and overall costs.
Electrochromic lenses offer advantages over photochromic lenses in terms of application scenarios, response speed, intelligent expandability, and service life. Electrochromic lenses change color based on current or voltage stimulation,不受环境影响, applicable in all scenarios; photochromic lenses rely on UV conditions for color change, limiting their application scenarios. In terms of response speed, electrochromic lenses change color rapidly due to current or voltage stimulation,不受环境影响, with fast and precise response; photochromic lenses rely on light energy absorption,受环境影响, with slower response speed and lower precision. For intelligent expandability, electrochromic lenses support system regulation and integration of multiple sensors, allowing user customization; photochromic lenses, due to their uncontrollable nature, face limitations in transient regulation and sensor integration. In terms of service life, electrochromic lenses, with electrolytes and other media, offer higher stability and longer service life; photochromic lenses are affected by the chemical cyclic decay of color-changing materials, resulting in shorter service life.
IV. In-depth Analysis of Photochromic Lenses
The principle of photochromic lenses is that photochromic material A undergoes a reaction under certain wavelengths of light (ultraviolet or visible light), generating compound B, which macroscopically manifests as changes in the material's color and transmittance attributes. When returned to the original lighting conditions, compound B reverts to material A, restoring transparency.
Photochromic lens technology is categorized into substrate color change, film layer color change, and other color-changing technologies. Substrate color change involves mixing photochromic materials uniformly with lens substrates and forming the lens through casting and solidification. The advantages include low cost, high wear resistance, and long service life. However, due to the thickness of the lens substrate, it may lead to uneven darkening from the outside to the inside, and significant differences in lens thickness can cause inconsistent color changes between the two eyes.
Film layer color change utilizes lens coating processes to add a color-changing film layer. Coating liquids prepared with spiropyran compounds and other photosensitive materials are applied to the lens substrate through immersion or spin-coating methods. The advantages include faster color-changing speed and better uniformity, but the manufacturing cost is higher, and the film layer's adhesion is influenced by materials and processes.
Other color-changing technologies include composite substrate color change, bulk polymerization color change, and embedded color change. Composite substrate color change combines the coating process of film layer color change with the casting process of substrate color change, avoiding thickness-related color differences while offering greater stability. This technology enhances anti-aging properties and extends product lifespan, but it requires multi-layer composite processing, posing challenges in technical complexity, process intricacy, and cost. It may also lead to deeper base colors, limited technical maturity, and difficulties in repair. Bulk polymerization color change involves mixing resin monomers with photochromic molecules and copolymerizing them before pressing into lens substrates. This method ensures uniform color change, avoids thickness-related color differences, offers faster response times, and demonstrates strong environmental adaptability and compatibility. However, it comes with higher costs, requires precise control of photochromic material dispersion, and involves complex processes. Low-temperature performance is restricted, and the stability of photochromic materials requires improvement. Embedded color change involves infiltrating photochromic materials into formed lenses under catalytic conditions to create a color-changing film layer within the substrate. This method reduces direct environmental impact on photochromic materials, enhancing anti-aging properties and extending product lifespan with faster color-changing speeds. However, not all optical resin substrates can adsorb photochromic materials, and compatibility between photochromic compounds and resin substrates is challenging to control, leading to lower yields.
Currently, the market primarily focuses on substrate color change and film layer color change, with the latter gaining prominence due to its faster color-changing speed and superior uniformity. Substrate color change involves photochromic materials dispersed within the lens substrate, where color change and fading result from the diffusion of these materials throughout the substrate, a process limited by the substrate material's diffusion efficiency, resulting in slower speed. In contrast, film layer color change is based on a photosensitive film layer attached to the lens, allowing for more direct reversible reactions, thus achieving faster color-changing and fading speeds. In terms of color uniformity, substrate color change is affected by the thickness of the lens substrate, leading to a phenomenon where the center is darker than the edges. Film layer color change, however, is influenced only by the thickness of the film layer, independent of the lens substrate's thickness, resulting in better color uniformity. Regarding service life, substrate color change, with photochromic materials embedded within the lens substrate, exhibits stronger resistance to environmental interference, while film layer color change is more susceptible to environmental factors, potentially causing issues such as film layer abrasion, detachment, or irreversible oxidation, resulting in a shorter lifespan. In terms of cost, substrate color change benefits from mature processes and simpler procedures, making it suitable for mass production at a lower cost. Film layer color change, however, involves complex processes, reliance on imported photochromic materials, and the need for high-precision vacuum coating equipment, along with multi-layer film designs such as anti-reflection and hard coatings, leading to higher technical barriers and costs.
Most traditional eyewear brands currently offer photochromic lenses using either substrate or film layer color change technologies, such as Essilor's Transitions, Zeiss's ZEISS Photochromic, Kemio Optics' photochromic lenses, Mingyue's photochromic series, Wanxin Optical's photochromic lenses, and Conntell Optics' photochromic lenses. These lenses are available for traditional prescription eyewear.
Technically, film layer color change surpasses substrate color change with faster response times and superior color uniformity, making it the current mainstream color-changing technology. In terms of materials, organic photochromic materials, such as spiropyrans and spirooxazines, are favored for their sensitivity to light, diverse color options, and suitability for resin lenses. Inorganic photochromic materials, including silver halides and transition metal oxides, are prized for their longer service life and higher fatigue resistance. Compared to electrochromic lenses, photochromic lenses automatically respond to light without requiring additional power sources, featuring simpler structures, lighter and thinner forms, and more established production processes, thus being more cost-effective. However, photochromic lenses have slower response times, are more affected by environmental factors, and exhibit declining optical performance over time, such as incomplete color or fading, residual base colors, and compromised transmittance and clarity. Additionally, the lack of controllability in photochromic lenses limits their ability to meet the growing demands for intelligent applications.
V. In-depth Analysis of Electrochromic Lenses
The principle of electrochromic lenses involves the alteration of a material's optical properties (reflectance, transmittance, refractive index, etc.) in a stable and reversible manner under the influence of an externally applied electric field, resulting in macroscopic changes in color and transparency. When the electric field is reversed, the material returns to its original state.
Electrochromic technology is primarily categorized into three types: PDLC/LC color change, SPD color change, and EC color change. PDLC/LC and SPD color change technologies are based on physical modulation of micro-molecular structures to induce changes in color and transmittance. In contrast, EC color change technology relies on redox reactions of the material to achieve similar effects.
PDLC technology operates on the principle that liquid crystal droplets within a polymer matrix align orderly under an electric field, allowing light to pass directly, rendering the glass transparent. When the electric field is absent, the liquid crystal molecules are randomly oriented, scattering light and giving the glass a translucent appearance. PDLC technology is relatively mature, cost-effective, offers fast color-changing response times, and enables zonal tinting. It also provides the benefit of translucency for privacy protection. However, its limitations include moderate thermal insulation, high haze, limited transmittance adjustability, and a whitish appearance, making it unsuitable for eyeglass lenses due to visual clarity issues. It is more applicable in interior partitions, building facades, and automotive glass.
LC technology builds upon PDLC by incorporating dichroic dye molecules onto liquid crystal molecules. By controlling the orientation of the liquid crystal molecules, the dye molecules' orientation is indirectly adjusted, enabling light absorption or transmission and thus regulating color depth. This technology enhances visual clarity by reducing haze, providing excellent glare reduction in tinted states while maintaining sufficient transparency for environmental visibility. Despite these advantages, LC technology involves higher manufacturing costs and challenges in integrating with highly curved glass, limiting its application to planar glass used in lenses, electronic writing tablets, and automotive glass.
SPD technology utilizes suspensoid particles with oriented light absorption characteristics dispersed in a suspension fluid. In the absence of an electric field, these particles are randomly arranged, absorbing over 99% of visible light. When an electric field is applied, the particles align, allowing light to pass. SPD technology offers continuous adjustability, enabling free control over glass transparency for smooth transitions between transparent, semi-transparent, and opaque states. It also provides suitable lighting and visual effects with fast color-changing speeds and thermal insulation capabilities. However, its high costs, patent barriers, and limited domestic adoption confine its use to the construction and automotive industries.
EC technology is based on the principle of reversible redox reactions in electrochromic layers under the influence of voltage or current, altering the material's optical properties such as color and transmittance. Typically, this involves a transition from a transparent to a colored state, with the reverse occurring upon electric field inversion. The EC film structure consists of seven layers: a protective layer, a first transparent conductive layer, an electrochromic layer, an electrolyte, an ion storage layer, a second transparent conductive layer, and a device substrate. The protective layer, made of materials like resin, glass, or flexible transparent plastic, seals the device against environmental degradation. The transparent conductive layer (TCO), usually indium tin oxide (ITO), facilitates electron transport while maintaining high transmittance, forming electrodes on either side of the electrochromic layer to enable redox reactions. The electrochromic layer undergoes ion insertion or de-insertion during redox reactions to effect color changes and is categorized into inorganic and organic materials. The electrolyte layer serves as an ion transport medium to balance charges and can be liquid, quasi-solid, or fully solid. The ion storage layer stores or releases ions to maintain charge equilibrium and, in some designs, also exhibits color-changing properties. The substrate, composed of materials like resin, glass, or flexible transparent plastic, provides mechanical stability to the device structure.
When an electric field is applied across the EC film, ions migrate from the ion storage layer through the electrolyte to the electrochromic layer, where oxidation reactions occur, resulting in material coloration. Reversing the electric field polarity causes ions to move back to the ion storage layer, inducing reduction reactions in the electrochromic layer and returning it to a transparent state.
Complementary electrochromic structures incorporate electrochemically complementary color-changing materials into the ion storage layer. Upon stimulation by voltage or current, the anode layer undergoes oxidation and colors, while the cathode layer reduces and also colors, leading to an overall deepening of the lens color. Upon power disconnection, the anode layer reduces and the cathode layer oxidizes, causing the lens to revert to transparency. Compared to single-layer EC structures, complementary electrochromic structures offer a broader optical modulation range, enhanced charge storage capacity, and extended service life.
Electrochromic device forms encompass gel-based EC technology, inorganic solid-state EC technology, and flexible solid-state EC technology. Gel-based EC technology involves injecting fluid gel materials between two glass panels, with紫罗精 ( Spiro compounds ) as the primary color-changing material. Upon electrification, a redox reaction occurs, resulting in blue coloration. However, this technology suffers from uneven gel distribution, leading to non-uniform coloration. Inorganic solid-state EC technology employs magnetron sputtering to deposit inorganic materials like tungsten trioxide (WO3) onto glass substrates, addressing issues of uneven coloration and application limitations found in gel-based EC technology. Nevertheless, this technology is restricted to planar substrates for EC material sputtering, posing challenges for curved surfaces and resulting in higher production costs. Flexible solid-state EC technology utilizes roll-to-roll coating processes to evenly disperse polymeric materials into solutions, which are then coated onto films. After high-temperature drying, EC composite films are produced. This technology enhances the cost-effectiveness of EC products and overcomes the limitations of traditional glass substrates, enabling EC products of various sizes and shapes.
Electrochromic coloration technology encompasses RGB color mixing and prism dispersion techniques. RGB color mixing is based on the principle of additive color mixing of the three primary colors (red, green, and blue). By regulating two or more layers of electrochromic layers with different colors, the technology achieves overlapping and additive mixing of colors, thereby realizing a full spectrum of color changes. Prism dispersion technology, on the other hand, relies on the principle of light refraction through prisms. By utilizing ultra-fine nano-prism crystal materials to split natural light and adjusting the refractive angle of these nano-prisms via electrocontrol, specific wavelengths of light can be transmitted, achieving color variation.
In terms of electrochromic technology comparison, PDLC, LC, SPD, and EC technologies exhibit differences in modulation type, operating environment, structural composition, response speed, optical properties, and service life. PDLC technology features light diffusion for privacy protection and operates within a temperature range of 20-80°C with an AC voltage of 36V. LC technology offers multi-color options and rapid color change, functioning within a temperature range of -20 to 85°C and an AC voltage of 30V. SPD technology provides stepless transparency control for privacy and operates within 0-60°C with an AC voltage of 110V. EC technology stands out with high light transmittance, stepless adjustability, rapid color change, low-voltage operation, and memory retention upon power disconnection. It operates within a broad temperature range of -20 to 90°C and a DC voltage of 1.5-35V. EC technology also excels in adjustable transmittance range, thermal insulation, color variation, continuous adjustability, optical stability, production autonomy, longevity, and cost-effectiveness.
Materials for electrochromic technologies vary: PDLC/LC technologies primarily use liquid crystal droplets and dye molecules, while SPD technology employs suspensoid particles, typically iodides or bromides, coated with polyvinyl alcohol polymers. EC technology materials are categorized into organic and inorganic types, with the former including derivatives of polythiophene and viologen compounds, and the latter featuring inorganic materials such as tungsten trioxide (WO3) and niobium pentoxide (Nb2O5).
The manufacturing process for EC color-changing technology involves several steps: substrate pretreatment, film layer fabrication, photolithography, electrode manufacturing, heat treatment, cutting, FPC (Flexible Printed Circuit) connection, cover plate bonding, cleaning, and sealing. Substrate pretreatment includes cleaning, drying, and plasma treatment to enhance surface activity. Film layer fabrication utilizes magnetron sputtering to create electrochromic layers, transparent conductive layers, and other film structures. Photolithography defines patterns for electrodes and functional areas. Electrode manufacturing employs screen printing to form complete circuit structures. Heat treatment enhances device stability. Cutting uses laser technology to divide large-area devices into individual units. Each unit is connected to an FPC for electrical conduction. The cleaned cover plate is bonded to protect internal components. Edge sealing isolates the device from moisture and oxygen, improving environmental durability.
Electrochromic products find applications across various sectors, including construction, automotive, aviation, consumer electronics, and more. In the context of electrochromic lenses, they are predominantly used in AR smart glasses, such as the Xreal Air2 Ultra, Viture Pro, ARKNOVA VA1, INAIR Pro, and Xiaomi Wireless AR Glasses Explorer Edition. Traditional glasses with electrochromic lenses are less common, with examples like the Veek's Chamelo glasses.
The upstream segment of the electrochromic lens industry chain consists of raw material suppliers, including lens substrates, ITO films, color-changing materials, magnetron sputtering targets, and sputtering equipment. These components are primarily involved in the manufacture of lens bases, transparent electrodes, and color-changing films. The midstream segment comprises electrochromic module suppliers, such as PDLC/LC color-changing modules and EC modules, which are responsible for the design, manufacturing, and processing of electrochromic lenses. Currently, there are few SPD module suppliers in China, with most applications in architectural or automotive smart windows, which are not included in this industry map. The downstream segment involves electrochromic lens brand manufacturers, which handle the sales and after-sales service of electrochromic lenses, offering products with electrochromic functionality.
Compared to photochromic lenses, electrochromic lenses offer faster response times, are less affected by the environment, have broader application scenarios, longer service lives, and enable intelligent adjustment. However, they have drawbacks such as power dependency, more complex structures, relatively thicker forms, and higher costs due to limitations in film layer materials and manufacturing processes.
VI. Summary of Color-changing Lens Technology
Color-changing lenses are a core category in today's traditional eyewear industry, with the primary goal of achieving convenient and rapid self-adaptive light adjustment to accommodate varying lighting conditions across different scenarios, eliminating the need for frequent lens changes.
Currently, photochromic lenses are the mainstream choice due to their affordable prices and mature industrial chains. Their advantages include no need for an external power source, lightweight and thin profiles, gentle color-changing processes, established manufacturing techniques, lower costs, and compatibility with various refractive degrees. However, with the advancement of technology and the rise of AI/AR smart glasses, the consumer market (C-end) is imposing higher demands on the controllability, response speed, application scenarios, and intelligent features of color-changing lenses. Electrochromic lenses, with their multi-level controllable light adjustment and faster modulation speeds, are becoming the direction for the evolution of color-changing lens technology. Notably, vendors such as Xiaomi, Xreal, Xingzhe Wujie, Zunjing Wuzhi, and Duoping Weilai have already launched or are about to launch smart glasses based on electrochromic technology. It is anticipated that electrochromic lenses will become the preferred upgrade solution for most smart glasses in the future.
A comparison of color-changing technologies reveals that photochromic lenses are lighter, have a thickness comparable to regular lenses, offer a moderate adjustable transmittance range, have slower response times, are uncontrollable, rely on ambient light, can be integrated with prescription lenses, are limited to specific lighting scenarios, experience slower response times at low temperatures, and have a lifespan of around 100,000 cycles. In contrast, electrochromic lenses are thicker than regular lenses, offer a broader adjustable transmittance range, have faster response times, are controllable, rely on a power source, require separate prescription lenses, are suitable for all scenarios, are unaffected by temperature, and have a lifespan of around 1,000,000 cycles.
VII. Report Issuing Organization and Copyright Statement
Wellsenn Information is a vertical research institution focused on the VR/AR/MR industry. It specializes in systematically tracking and studying the upstream supply chain, midstream software, downstream content, and application scenarios of VR/AR/MR. Utilizing a research methodology that combines top-down and bottom-up approaches, it provides timely, objective, comprehensive, and forward-looking data analysis, industry research, and consulting services for VR/AR/MR practitioners and investors.
This report is available in free, paid, and membership versions, with all copyrights belonging to Wellsenn Information. For the publicly available free version, citations should credit "Wellsenn Information." For the paid and membership versions, when using the report's data and content, please credit "Wellsenn Information" as the source. Plagiarism, unauthorized copying, malicious alteration, and dissemination of the report are strictly prohibited. Wellsenn Information does not guarantee the accuracy, completeness, or reliability of the data in this report. The information, viewpoints, and projections in the report reflect the authors' judgments at the time of publication and are subject to change without notice. Wellsenn Information reserves the right to modify or update the information in the report and encourages readers to follow and track the latest updates and revisions from Wellsenn Information.
VIII. Other Related Reports and Research
The report also mentions other related studies and reports issued by Wellsenn Information, including the "Virtual and Real: AI New Era" Wellsenn Annual Speech 2025 Full Text, Xiaomi AI Smart Glasses Teardown and BOM Cost Report (Forecast), AI Smart Glasses Industry Map 2025 Edition, AI Smart Glasses Sales Tracking Report 2024, VR/AR Industry Sales Volume Tracking Series Reports, AR Optics Special Topic Research Report, XR Hardware Teardown and BOM Cost Report, Ray-Ban Meta Smart Glasses Survey Report Series, and Apple Vision Pro Teardown Special Report. These cover various aspects of the VR/AR/MR industry, providing comprehensive data analysis and industry research for practitioners and investors.
一、报告背景与产业论坛信息
报告发布信息:由维深信息创始人何万城主导,于2025年04月03日发布,由广东MiellsennXR KID康泰达科技主办,深圳市维深信息技术有限公司和昆山康泰达智能科技有限公司联合主办,深圳市增强现实技术应用协会协办,深圳盛彩活动策划有限公司承办。
产业论坛详情:论坛名为“A/+AR智能眼镜智能制造高峰论坛”,举办时间为2025年4月11日13:00-17:30,在深圳南山的深圳湾万怡酒店举行。论坛议程丰富,包括签到、产品体验、开场致辞、多位嘉宾的主题演讲以及自由交流、合影留念等环节。演讲嘉宾来自不同企业和机构,涉及AI眼镜产业规模与趋势、光学检测解决方案、密封检漏技术、点胶工艺、SIP封装技术、测试技术等多个方面。此外,论坛还提供了20+最新A/AR智能眼镜体验,包括Solos、AirGo、Snapchat Spectacles 3、Roy Ban、Metair鸟V3、雷鸟X2、闪极拍拍镜、逸文G1、CHAMELO电变彩色星纪魅族MYVU、星纪热族StarVair2HoloSwim2、影目AR2、目GO1、影GO2、李未可ChatAl眼睛、李未可Meta Lens1等众多品牌产品。参展商包括KD康泰达科技、FSTW、HIRAVE、SUHMEN等。参会费用为999元/人,限额150人参加。
二、变色技术概述
变色技术定义与发展历程:变色技术是一项融合材料学、光学与化学的交叉创新技术,自二十世纪六十年代光致变色玻璃问世以来,经历了从光致变色到电致变色的发展阶段。其核心理念是通过响应环境光强变化动态调节透光率,实现强光与弱光环境的无缝衔接。
光致变色镜片现状:目前光致变色镜片以低成本和轻薄的模组成为主流选择,但随着AI/AR智能眼镜在消费级市场的渗透,C端消费市场对变色镜片的响应速度、智能化集成等提出了更高要求。
电致变色镜片优势与发展趋势:电致变色镜片以其低响应速度、多级可控特性以及日渐成熟的量产工艺,逐渐成为智能眼镜市场的发展和进化方向。小米、Xreal、Viture、INAIR等厂商已经推出或将推出搭载电致变色镜片的AI/AR智能眼镜,预计电致变色镜片未来将成为多数智能眼镜升级的首选方案。其关键在于电致变色层的设计,利用电流或电压刺激,改变变色层材料的物理结构或化学特性,实现不同光照条件下的平缓过渡。此外,电致变彩技术扩展了电致变色镜片更多使用场景,为智能眼镜SKU多元化增添新解决方案。
三、变色镜片技术细节分析
变色镜片原理:变色镜片能够根据环境光线或电信号变化调节透光率,通过动态调节镜片颜色深浅,实现强光场景下减少眩光,弱光场景下保障清晰度的功能。
变色镜片特点:
在传统眼镜领域,提供复杂光照环境下无继过渡的紫外线保护和眩光保护,实现普通眼镜与太阳镜的快捷切换,针对光敏感人群或极端光线环境提供持续性保护,还可通过选配不同颜色镜片实现防蓝光、滤除杂光、缓解用眼疲劳、增添时尚性等用途,全天候适配多样化场景,持续保护用眼健康。
在AI/AR智能眼镜领域,支持AR设备在不同光照条件下提供更逼真、更舒适和更具有个性化的用户体验,针对不同光线强度实现不同透光率切换,配合显示屏幕亮度调节,增强虚拟成像光影效果,通过与传感器、算法深度整合,还可实时匹配用户视觉焦点区域亮度需求,预判环境变化减少视觉延迟等。
变色镜片分类:根据变色机制,可分为光致变色镜片和电致变色镜片两大主流类型。光致变色镜片依赖紫外线照射变色,适用于户外场景,部分产品添加可见光变色可用于车内等场景;电致变色镜片依赖电压或电流变色,在不同光照环境下都能响应。光致变色产品在光照条件下发生分子异构化等,受基片或膜层材料扩散影响,变色时间较长,且被动响应,用户无法调节环境光线强度;电致变色产品受电流或电压刺激改变结构或发生氧化还原反应,可快速响应需求变色,变色时间较短,且可控,用户可手动调节电流或电压大小方向,实现不同程度的变色褪色。光致变色工艺成熟,结构简单,无需额外电源或电路,材料成本低,总体成本更低;电致变色技术还在发展,供应链仍在完善,结构复杂,需额外电路和电源,存在膜层结构和封装结构,材料成本高,总体成本更高。
电致变色镜片特点:在场景适配上,电致变色靠电流或电压调节,不受环境影响,适用全场票;光致变色存在环维条件依膜,特定光照下才能变色,场最受限。在响应速度上,电致变色受电流或电压刺激变色层变色,不受环境条件影响,变色速度快,精度高;光致变色吸收光原能量触发材料反应,受环境条件影响,变色速度慢,精度低。在智能扩展上,电致变色可控性可支持系统的调控,可集成多种传感器,允许用户个性化调节;光致变色不可控性难以应对暂拍调控,集成多传感器存在限制。在使用寿命上,电致变色存在电解质等介质,稳定性更高,使用寿命更长;光致变色受变色材料化学循环衰减影响,使用寿命较短。
四、光致变色镜片深入剖析
光致变色原理:光致变色材料A在一定波段光(紫外光或可见光)照射下,反应生成化合物B,宏观表现为材料颜色、透过率等属性变化,恢复原始光照条件时,化合物B变回原始材料A,恢复透明状。
技术分类:
基片变色:将光致变色材料与镜片基材均匀混合,通过浇筑成型得到变色镜片。优点是成本低、耐磨强度高、使用寿命长,但受镜片厚度影响,可能导致同一镜片外暗内亮,双眼度数差异大时变色不一致。
膜层变色:利用镜片镀膜工艺添加变色膜层,采用螺吡哺类化合物等感光材料制备膜层涂布液,通过漫泡式或旋涂等方式加工。优点是变色速度快、变色均匀性好,但制造成本高,受环境温度影响,膜层附着性受材料、工艺影响。
其他变色技术:
合成变色技术:结合膜层变色镀膜工艺和基片变色浇筑成型工艺,避免基片变色色差,比膜层变色更稳定,抗老化能力提升,使用寿命延长,变色速度加快。但需多层复合加工,技术难度大,工艺复杂,成本高,易受合成技术影响造成底色深,技术成熟度有限,难以维修。
本体聚合变色:将树脂单体与光致变色分子等混合于同一体系内共同聚合,再压制成镜片基材。优点是变色均匀,避免厚度色差,响应速度快,环境适应性强,兼容性好,但成本高,需精准控制变色物质分散,工艺复杂,低温性能受限,变色物质稳定性需提升。
埋入式变色:在催化条件下,将光致变色材料渗入成型镜片中,在基材内表层形成变色膜层。优点是减少外界环境对变色材料的直接影响,抗老化能力提升,使用寿命长,变色速度快,但并非所有光学树脂基材都具有表面吸附变色材料能力,且光致变色化合物与树脂基材的相容性难以控制,良品率较低。
光致变色技术对比:目前市场上以基片变色与膜层变色为主,膜层变色因更快的变色速度、更好的变色均匀性逐渐成为主流选择。基片变色材料分布于镜片基材,变色与褪色是变色材料的结合与分离过程,需扩散至整个基片,受基片材料扩散效率限制,速度相对较慢;膜层变色基于附着于镜片的膜层,可逆
Reasoning Completed
Summarize key points and details from provided text, write comprehensive report
一、报告背景与产业论坛信息
本文是关于AI智能眼镜电致变色镜片产业的研究报告,由维深信息创始人何万城主导,于2025年04月03日发布。报告由广东MiellsennXR KID康泰达科技主办,深圳市维深信息技术有限公司和昆山康泰达智能科技有限公司联合主办,深圳市增强现实技术应用协会协办,深圳盛彩活动策划有限公司承办。报告的发布与即将举办的“A/+AR智能眼镜智能制造高峰论坛”紧密相关,该论坛将于2025年4月11日在深圳南山的深圳湾万怡酒店举行,旨在探讨AI/AR智能眼镜的产业趋势、技术创新及应用前景。
论坛议程丰富多样,包括签到、产品体验、开场致辞以及多个主题演讲环节。演讲嘉宾来自不同企业和机构,涵盖AI眼镜产业规模与趋势、光学检测解决方案、密封检漏技术、点胶工艺、SIP封装技术、测试技术等多个方面。此外,论坛还提供了20多款最新A/AR智能眼镜的体验机会,包括Solos、AirGo、Snapchat Spectacles 3、Roy Ban、Metair鸟V3、雷鸟X2等众多品牌产品。参展商包括KD康泰达科技、FSTW、HIRAVE、SUHMEN等。参会费用为999元/人,限额150人参加。
二、变色技术概述
变色技术是一项融合材料学、光学与化学的交叉创新技术,自20世纪60年代光致变色玻璃问世以来,经历了从光致变色到电致变色的发展历程。其核心理念是通过响应环境光强变化动态调节透光率,实现强光与弱光环境的无缝衔接。
光致变色镜片目前以低成本和轻薄的模组成为主流选择,但随着AI/AR智能眼镜在消费级市场的渗透,C端消费市场对变色镜片的响应速度、智能化集成等提出了更高要求。电致变色镜片以其低响应速度、多级可控特性以及日渐成熟的量产工艺,逐渐成为智能眼镜市场的发展和进化方向。小米、Xreal、Viture、INAIR等厂商已经推出或将推出搭载电致变色镜片的AI/AR智能眼镜,预计电致变色镜片未来将成为多数智能眼镜升级的首选方案。
电致变色镜片的关键在于电致变色层的设计,利用电流或电压刺激,改变变色层材料的物理结构或化学特性,实现不同光照条件下的平缓过渡。此外,电致变彩技术扩展了电致变色镜片更多使用场景,为智能眼镜SKU多元化增添新解决方案。
三、变色镜片技术细节分析
变色镜片能够根据环境光线或电信号变化调节透光率,通过动态调节镜片颜色深浅,实现强光场景下减少眩光,弱光场景下保障清晰度的功能。
在传统眼镜领域,变色镜片提供复杂光照环境下无继过渡的紫外线保护和眩光保护,实现普通眼镜与太阳镜的快捷切换,针对光敏感人群或极端光线环境提供持续性保护,还可通过选配不同颜色镜片实现防蓝光、滤除杂光、缓解用眼疲劳、增添时尚性等用途,全天候适配多样化场景,持续保护用眼健康。
在AI/AR智能眼镜领域,变色镜片支持AR设备在不同光照条件下提供更逼真、更舒适和更具有个性化的用户体验,针对不同光线强度实现不同透光率切换,配合显示屏幕亮度调节,增强虚拟成像光影效果,通过与传感器、算法深度整合,还可实时匹配用户视觉焦点区域亮度需求,预判环境变化减少视觉延迟等。
根据变色机制,变色镜片可分为光致变色镜片和电致变色镜片两大主流类型。光致变色镜片依赖紫外线照射变色,适用于户外场景,部分产品添加可见光变色可用于车内等场景;电致变色镜片依赖电压或电流变色,在不同光照环境下都能响应。光致变色产品在光照条件下发生分子异构化等,受基片或膜层材料扩散影响,变色时间较长,且被动响应,用户无法调节环境光线强度;电致变色产品受电流或电压刺激改变结构或发生氧化还原反应,可快速响应需求变色,变色时间较短,且可控,用户可手动调节电流或电压大小方向,实现不同程度的变色褪色。光致变色工艺成熟,结构简单,无需额外电源或电路,材料成本低,总体成本更低;电致变色技术还在发展,供应链仍在完善,结构复杂,需额外电路和电源,存在膜层结构和封装结构,材料成本高,总体成本更高。
电致变色镜片在场景适配上不受环境影响,适用全场票;光致变色存在环维条件依膜,特定光照下才能变色,场最受限。在响应速度上,电致变色受电流或电压刺激变色层变色,不受环境条件影响,变色速度快,精度高;光致变色吸收光原能量触发材料反应,受环境条件影响,变色速度慢,精度低。在智能扩展上,电致变色可控性可支持系统的调控,可集成多种传感器,允许用户个性化调节;光致变色不可控性难以应对暂拍调控,集成多传感器存在限制。在使用寿命上,电致变色存在电解质等介质,稳定性更高,使用寿命更长;光致变色受变色材料化学循环衰减影响,使用寿命较短。
四、光致变色镜片深入剖析
光致变色镜片的原理是光致变色材料A在一定波段光(紫外光或可见光)照射下,反应生成化合物B,宏观表现为材料颜色、透过率等属性变化,恢复原始光照条件时,化合物B变回原始材料A,恢复透明状。
技术分类方面,光致变色镜片包括基片变色、膜层变色和其他变色技术。基片变色是将光致变色材料与镜片基材均匀混合,通过浇筑成型得到变色镜片,优点是成本低、耐磨强度高、使用寿命长,但受镜片厚度影响,可能导致同一镜片外暗内亮,双眼度数差异大时变色不一致。膜层变色是利用镜片镀膜工艺添加变色膜层,采用螺吡哺类化合物等感光材料制备膜层涂布液,通过漫泡式或旋涂等方式加工,优点是变色速度快、变色均匀性好,但制造成本高,受环境温度影响,膜层附着性受材料、工艺影响。
其他变色技术包括合成变色技术、本体聚合变色和埋入式变色。合成变色技术结合膜层变色镀膜工艺和基片变色浇筑成型工艺,避免基片变色色差,比膜层变色更稳定,抗老化能力提升,使用寿命延长,变色速度加快,但需多层复合加工,技术难度大,工艺复杂,成本高,易受合成技术影响造成底色深,技术成熟度有限,难以维修。本体聚合变色是将树脂单体与光致变色分子等混合于同一体系内共同聚合,再压制成镜片基材,优点是变色均匀,避免厚度色差,响应速度快,环境适应性强,兼容性好,但成本高,需精准控制变色物质分散,工艺复杂,低温性能受限,变色物质稳定性需提升。埋入式变色是在催化条件下,将光致变色材料渗入成型镜片中,在基材内表层形成变色膜层,优点是减少外界环境对变色材料的直接影响,抗老化能力提升,使用寿命长,变色速度快,但并非所有光学树脂基材都具有表面吸附变色材料能力,且光致变色化合物与树脂基材的相容性难以控制,良品率较低。
目前市场上以基片变色与膜层变色为主,膜层变色因更快的变色速度、更好的变色均匀性逐渐成为主流选择。基片变色材料分布于镜片基材,变色与褪色是变色材料的结合与分离过程,需扩散至整个基片,受基片材料扩散效率限制,速度相对较慢;膜层变色基于附着于镜片的膜层,可逆反应更直接,因此在变色与褪色的速度上更快。在变色均匀性上,基片变色受镜片基材厚度影响,容易出现中间比边缘颜色更深的现象,而膜层变色仅受膜层厚度影响,与镜片厚度无关,变色均匀性更好。在使用寿命方面,基片变色嵌入在镜片基材中,抗环境干扰能力强,而膜层变色受环境影响,可能导致膜层刮花、脱落或发生不可逆氧化等问题,使用寿命相对较短。在成本方面,基片变色工艺成熟,流程简单,适合规模化生产,成本较低;膜层变色工艺复杂,变色材料依赖进口,需高精度真空镀膜设备,存在减反射膜、硬膜等多层膜设计,工艺复杂,良率低,技术壁垒高,因此成本更高。
光致变色材料可分为有机光致变色材料、无机光致变色材料以及有机-无机复合光致变色材料。有机光致变色材料为有机分子,共价键主导,变色依赖化学键断裂、分子顺反异构、电子相互异构等,如螺环的开环闭环,具有颜色选择性多样、可塑性强的特点,主要应用于树脂镜片,但耐高温性较差。无机光致变色材料为金属氧化物或纳米颗粒,以离子键主导,变色依赖离子迁移或晶体结构重构,具有更高的耐高温和抗疲劳性,不易受湿气或氧气等环境影响,寿命长,可逆次数多,但响应速度慢,加工难度大。有机-无机复合光致变色材料将有机变色分子与无机材料杂化,形成协同效应,兼具有机材料的快速响应和无机材料的稳定性,可提升变色速度和循环寿命,扩展应用场景,但目前仍处于实验室阶段。
光致变色镜片的膜层变色工艺流程包括镜片基材预处理、膜层材料配备、涂覆、固化、后处理等步骤。预处理包括清洁、烘干、等离子处理增加表面活性等;膜层材料配备需添加变色材料、成膜物质、添加剂,经机械搅拌或超声分散形成均匀稳定的涂布液;涂覆采用浸涂、喷涂、旋涂等方法将涂布液均匀涂覆在镜片基材表面;固化通过光固化或热固化使膜层成型;后处理包括清洗、去除未固化物质或杂质、干燥、检验与包装等。
目前多数传统眼镜品牌厂商都推出了采用基片变色或膜层变色的变色镜片,如依视路Transitions、蔡司焕色视界、凯米光学变色镜片、明月镜片光致变色系列、万新光学变色镜片、康耐特光学变色镜片等。这些变色镜片以传统配镜的方式供用户选择。
在技术上,膜层变色相较于基片变色具有更快的响应速度以及更高的变色均匀性,更适合目前市场的需求,成为目前主流的变色技术。在材料上,光致变色有机材料多采用螺吡哺类、螺愿嗪类材料,特点是变色灵敏、颜色选择丰富,适合树脂镜片制造。光致变色无机材料则采用卤化银、过渡金属氧化物等,特点是使用寿命长,抗疲劳性高。与电致变色相比,光致变色技术自动响应变色,无需额外电源,结构简单,整体形态也相对轻薄,工艺更成熟,因此成本更低,但缺点是变色速度相对较慢,受环境因素影响较大,受次数影响光学性能下降,产生变色不完全或裙色不完全等,存在底色残留,影响透光性与清断度,同时光致变色无法人为控制,难以满足进一步的智能化需求。
五、电致变色镜片深入剖析
电致变色镜片的原理是变色材料在外加电场的作用下,内部分子结构产生结构变化或离子迁移等现象,使得变色材料在光学属性(反射率、透过率、折射率等)发生稳定、可逆的变化,宏观上表现为颜色和透明度的变化,待反转电场后,恢复初始状态。
电致变色技术主要分为三大类:PDLC/LC变色、SPD变色以及EC变色。其中PDLC/LC变色以及SPD变色为物理调光技术,基于微分子物理结构的变化引起颜色、透光度的变化;EC变色为化学调光技术,基于材料的氧化还原反应引起颜色、透光度的变化。
PDLC变色技术的原理是液晶膜中的高分子在通电时呈有序排列状,光线直射穿过,玻璃相应变成透明状,不通电时液晶分子无序排列,光线散射,玻璃呈现透光而不透明的外观状态。PDLC变色技术的优点是发展相对成熟、成本低、变色响应速度快、可实现分区调色,具有透光不透明特性,保护隐私。缺点是隔热效果有限、雾度高、透光率可调范围低、颜色偏白,适用于室内隔断、建筑幕墙以及汽车玻璃等场景,但雾度影响视觉清晰度,并不适合用在眼镜镜片上。
LC变色技术是在PDLC变色技术的基础上发展而来,通过在液晶分子上附着二向色性染料分子,通过调控液晶分子的开合角度,间接调整染料分子的开合角度,实现吸光或透光的特性,进而实现颜色深浅的调节。LC变色技术优化了整体部件的视觉效果,使得产品雾度更低,在着色状态下吸收大量散射光线时,提供良好的避光效果,同时保持一定的通透性,允许在深色状态下用户能透过镜片看清环境。缺点是制造工艺成本高,与较大弧度的玻璃集成存在难度,主要作用于较平整的玻璃,目前用于镜片、电子手写板、汽车玻璃等领域。
SPD变色技术的原理是将有取向光吸收特性的粒子分散在悬浮液中,不通电时,布朗运动的粒子随机排布,可以吸收99%以上的可见光,当施加电压时,粒子发生取向排列,光线得以通过。SPD变色技术的优点是可以无极调节,自由控制玻璃的透明度,实现从透明、半透明或全遮光的平滑转变,提供合适的光照和视觉效果,且变色速度快,可实现隔热遇光效果等。缺点是成本高,技术专利壁垒高,国内较少企业布局,目前主要用于建筑、汽车等行业。
EC变色技术的原理是电致变色层中的变色材料在电压或电流的作用下发生可逆的氧化还原反应,变色材料的颜色和透光率、反射等光学属性发生变化,通常表现为由透明状向若色状的转变,当反转电场后,变色材料发生还原反应,恢复原始的材料结构,宏观上则表现为由着色状向透明状的转变。EC变色结构共有七层,包含保护层、第一透明导电层、电致变色层、电解质、离子存储层、第二透明导电层以及器件基底。保护层一般为树脂、玻璃或柔性透明塑料等,主要用于为器件提供密封环境,防止环境侵蚀,延长使用寿命;透明导电层(TCO)一般为氧化铟锡(ITO),主要用于为电子提供传输通道,同时保持高透光性,位于电致变色层两侧,形成上下电极,为变色材料的氧化还原反应提供电气条件;电致变色层通过离子嵌入或脱出发生氧化还原反应,实现颜色变化,电致变色材料可分为无机电致变色材料和有机电致变色材料;电解质层为离子传输介质,用于平衡电荷,包括液态、准固态或全固态;离子存储层用于存储或释放离子,维持电荷平衡;基底一般为树脂、玻璃或柔性透明塑料等,主要用于支撑器件结构,提供机械稳定性。
在EC薄膜两边施加电场,离子由离子存储层经电解质向电致变色层迁移,电致变色层发生氧化反应,材料发生颜色变化,呈若色状,当转换正负极,施加反向电场,离子由电致变色层向离子存储层移动,电致变色层发生还原反应,材料发生褪色,呈透明状。
互补型电致变色结构是在离子存储层中加入与阳极变色材料具备电化学互补特性的变色材料,当受电压或电流刺激时,阳极变色层发生氧化反应,呈着色状,阴极变色层发生还原反应,同样呈着色状,宏观表现为镜片颜色加深。断电后,阳极变色层发生还原反应,阴极变色层发生氧化反应,宏观表现为镜片恢复透明状。与单变色层的EC变色结构相比,互补型电致变色结构具有更大的光调制范围、更强的电荷存储能力以及更长的使用寿命。
EC变色器件形态包括凝胶EC变色技术、无机固态EC变色技术和柔性固态EC变色技术。凝胶EC变色技术利用灌胶技术,将流动的凝胶材料灌入两片玻璃中,变色材料以紫罗精为主,通电后发生反应呈蓝色着色状,但存在变色不均匀的问题。无机固态EC变色技术利用磁控溅射技术,以巨大能量撞击材料表面,使得固态变色材料内的原子沉积在被镀玻璃上,变色材料以无机材料为主,如三氧化钨,解决了凝胶EC技术变色不均匀以及产品使用受限的问题,但仅适合在平面基底进行EC材料镀膜,曲面镀膜难,工艺成本高。柔性固态EC变色技术采用卷对卷涂布工艺,将聚合物材料均匀分散成溶液,用仪器将EC溶液涂布在薄膜上,对完成涂布的薄膜进行高温烘干,制成EC复合薄膜,提升了EC产品的性价比,同时以薄膜为基底打破了传统玻璃基底的局限性,让不同面积、任意形状的EC产品成为了可能。
电致变彩技术包括RGB合色技术和棱镜分光技术。RGB合色技术基于RGB三原色的混合叠加,实现多彩的显示,通过调控具备两层或两层以上不同颜色的电致变色层,实现不同颜色的漏合叠加,从而实现彩色的电致变色效果。棱镜分光技术基于棱镜分光原理,利用超精细微纳棱镜晶体分子材料实现对自然光的分光,通过电控技术调整微纳棱镜晶体的折射角度,以此实现特定颜色光线的传播,完成彩色变化。
电致变色技术对比显示,PDLC、LC、SPD和EC技术在调光类型、工作环境、整体结构、响应速度、光学特性、使用寿命等方面存在差异。PDLC技术特点是通光不透明、隐私保障,工作温度为20-80℃,工作电压为36V交流电;LC技术特点是多色选择,快速变色,工作温度为-20-85℃,工作电压为30V交流电;SPD技术特点是无极调节,隐私保障,工作温度为0-60℃,工作电压为110V交流电;EC技术特点是通透清晰,无极调节,快速变色,低压驱动、断电记忆,工作温度为-20-90℃,工作电压为1.5-35V直流电。在可调透光率范围、隔热效果、变色选度、连续可调性、光学稳定性、生产自主度、严酷寿命和价格等方面,EC技术具有一定的优势。
电致变色材料方面,PDLC/LC技术的材料主要为液晶微滴、染料分子等,SPD技术的材料为悬浮粒子,通常为碘化物或溴化物,表面涂有聚乙醇等聚合物。EC技术的材料可分为有机材料和无机材料,有机材料主要有聚噻吩类及其衍生物和紫罗精类,无机材料则包括三氧化钨(WO3)和五氧化二钒(Nb2O5)等。
EC变色工艺流程包括基材预处理、膜层制造、光刻、电极制造、热处理、切割、FPC连接、盖板粘合、清洁和封边等步骤。基材预处理对基底进行清洁、活化等处理;膜层制造通过磁控溅射等工艺制造电致变色层、透明导电层等膜层;光刻利用光刻技术定义图案,定义电极、功能区等结构;电极制造通过丝网印刷等工艺制造电极,形成完整的电路结构;热处理提升器件稳定性;切割采用激光切割工艺,将大面积器件切割成独立单元;为每个独立单元连接FPC,实现电路导通;粘合清洁后的盖板,保护内部结构;对器件边缘进行密封处理,隔绝水汽、氧气等,提升产品环境耐受性。
电致变色产品涉及多个领域,覆盖建筑、汽车、飞机、消费电子等多个行业,其中涉及电致变色镜片的,则多为AR智能眼镜产品,如Xreal Air2 Ultra、Viture Pro、ARKNOVA VA1、INAIR Pro、小米无线AR眼镜探索版等;涉及传统眼镜行业的较少,如唯酷的Chamelo眼镜等。
电致变色镜片产业链上游为原材料供应商,包括镜片基材、ITO膜、变色原料、磁控溅射靶材以及磁控溅射设备等,主要涉及镜片基底、透明电极、变色膜层等部件的制造。中游产业链为电致变色模组供应商,包括PDLC/LC变色模组以及EC模组,为电致变色镜片的设计、制造或加工等。目前国内SPD模组厂商较少,多用于建筑或车机智能窗,本图谱暂不作统计。下游产业链为电致变色镜片品牌厂商,涉及电致变色镜片的销售与售后,为具备电致变色功能的产品。
与光致变色相比,电致变色速度快,受环境影响小,应用场景广,使用寿命长,可实现智能化调垫。缺点是存在电源依赖,结构相对复杂,整体形态相对较厚,相关产业链在发展成熟,但受制于膜层原料及制造工艺,成本相对更高。
六、变色镜片技术总结
变色镜片作为当下传统眼镜中一个核心的品类,其核心是追求更方便快捷的自适应调光以应对不同场景下的光照条件,无需用户频繁更换眼镜。
目前,光致变色镜片以其更亲民的价格以及成熟的产业链,成为当前主流的变色镜片选择。其优点在于无需额外电源,形态轻薄,变色过程柔和,生产工艺成熟,成本相对较低,在不同屈光度上具有更高的兼容性。随着技术演进与AI/AR智能眼镜的兴起,C端消费市场对变色镜片的可控性、响应速度、应用场景、智能特性等提出了更高的要求。电致变色镜片以其多级可控调光特性以及更快的调光速度,成为变色镜片发展和进化的方向。特别是小米、Xreal、行者无疆、致敬未知、多屏未来等厂商已经推出或即将推出基于电致变色的智能眼镜,预计电致变色镜片将成为未来多数智能眼镜升级的首选方案。
变色技术对比显示,光致变色镜片较轻,与普通镜片厚度相近,透光率可调范围中等,响应速度慢,不可控,依赖环境光照,可集成与屈光镜片中,应用环境为特定光照场景,低温响应速度变慢,寿命为十万次。电致变色镜片较厚,比普通镜片较厚,透光率可调范围大,响应速度快,可控,依赖电源,需外挂屈光镜片,应用环境为全场景,不受温度影响,寿命为百万次。
七、报告发布机构与版权声明
维深信息WellsennXR是VR/AR/MR产业垂直研究机构,专注于对VR/AR/MR产业上游供应链和整机、中游软件、下游内容以及应用场景的系统性跟踪和研究,以定量分析为主,定性分析为辅,通过自上而下和自下而上相结合的研究方法,为VR/AR/MR从业者和投资者提供及时的、客观的、全面的、有前瞻性的数据分析、行业研究和咨询服务。
本报告分为免费版、付费版和会员版,所有版权归属为维深信息所有。对于公开免费版,引用请注明来源为“维深信息WellsennXR”。对于付费版和会员版,使用报告数据和内容,请注明数据来源为“维深信息WellsennXR”,严禁整篇报告抄袭复制、恶意篡改、传播转发等侵权行为。维深信息对报告数据的准确性、完整性或可靠性不做任何保证,报告中的信息或表述的观点仅代表作者的研究观点,不构成对任何人和任何机构的投资建议。报告信息来源于公开的资料和数据库,维深信息对该信息的准确性、完整性或可靠性不做任何保证,报告所陈列的数据和资料,观点和推测仅代表报告发布时点维深信息的判断,在不同时期,维深信息可发出与本报告所载资料、意见及推测不一致的报告。维深信息对本报告所含信息可在不发出通知的情况下做出修改,读者可自行关注和跟踪维深信息最新更新和修改。
八、其他相关报告与研究
报告还提到了维深信息发布的其他相关报告与研究,包括《虚实之变·AI新时代》维深年度演讲2025演讲全文、小米AI智能眼镜拆解及BOM成本报告(预测)、AI智能眼镜产业图谱2025版、AI智能眼镜销量跟踪报告2024年度、VR/AR产业销售量跟踪系列报告、AR光学专题研究报告、XR硬件拆解及BOM成本报告、Ray-Ban Meta智能眼镜调研报告系列、Apple Vision Pro拆解专项报告等,涵盖了VR/AR/MR产业的多个方面,为从业者和投资者提供了全面的数据分析和行业研究。
以上是《AI智能眼镜电致变色镜片产业研究报告》的详细总结,涵盖了报告的所有细节内容,包括产业论坛信息、变色技术概述、技术细节分析、光致变色与电致变色镜片的深入剖析、技术总结、报告发布机构与版权声明以及其他相关报告与研究等。这份报告为AI智能眼镜电致变色镜片产业提供了全面而深入的洞察,对于相关领域的从业者和投资者具有重要的参考价值。